Produced Water Treatment Project Profile

Criteria for Awarding the Job

AE

Design Conditions

Inlet Pressure:AtmosphericOutlet Pressure:1.29 BargOperating Temperature:55 Deg. C.Design Pressure:10 BarDesign Temperature:80 Deg. C.ANSI Class:150#

Main Impurities in Produced Water

Dissolved Solids Heavy Metals Various Oils (emulsified and non-emulsified) **Suspended Solids Dissolved Gases (O₂, CO₂, and H₂S) Iron Scales Bacteria** Phenols, Toluene, and other toxic compounds **Rust and Corrosion Byproducts Sand Grains Radioactive Elements Bacteria** Treatment Chemicals

WHAT DO WE REMOVE?

Free Oil Sand and Turbidity Dissolved Gases Bacteria and Viruses

WHY?

Reduce harmful emissions to the environment Protect downstream equipment from erosion Prevent harmful & dangerous gasses from entering the atmosphere Improve well injectivity

Typical Oil Discharge Limits

Location North Sea Arabian Gulf Gulf of Mexico India Onshore Sudan Limit 40 mg/l 15 to 40 mg/l 29 mg/l 48 mg/l 0-5 mg/l 50 mg/l

Raw Water Analysis

(Year 2005) (After 2006)

(Year 2005) (After 2006)

Oil Content, ppm	67	100			
TSS, ppm	20	Nil	Anions		
TDS, ppm	7304	10600	Chloride, ppm	461	680
Dissolved Oxygen, ppm	2.48	Nil	Sulphate, ppm	28.6	3.3
Total Iron, ppm	1.88	2.8	Bicarbonate, ppm	4630	6660
Free CO2, ppm	1491	2300	Carbonate, ppm	Nil	Nil
Cations			Hydroxide, ppm	Nil	Nil
Sodium, nnm	1815	2610	Additional Comp		
Potassium, ppm	388	580	Boron, ppm	2.75	4.1
Coloium nnm	34.7	42	Aliminium, ppm	0.13	0.2
Carcium, ppin Moonosium, ppm	9.83	13	Silicon, ppm	12.1	18
Magnesium, ppm	2.88	43	Fluorine, ppm	0.23	Nil
Barium, ppm	0.90	1.2	NO. nnm	2.18	Nil
Strontium, ppm	0.00	1.4	NO ₃ , ppm	0.00109	Nil
Dissolved Iron, ppm	0.4	0.00	NO2	0.00109	1.00

Injected Water Quality

Average air permeability of water injection formation, mm ²	>0.6	
Standard classification	A3	
TSS (total suspended solids), mg/L	≤10.0	
Median diameter of suspended solid particles, mm	≤4.0	
Oil content, mg/L	≤50	
Dissolved oxygen, mg/L	<0.05	
Average corrosion rate, mm/a	<0.076	
Pitch corrosion	Apparent Pitch Corrosion on the Test Piece	
SRB (Sulfate reducing bacterium), bacterium/ml	<25	
Iron bacteria, 1 bacterium/ml	nx10 ⁴ (Note)	
(Saprophytic bacteria) TGB, 1 bacterium/ml)	nx10 ⁴ (Note)	
Membrane filtration factor	10	
Total iron content, mg/L	<0.5	
Free carbon dioxide content, mg/l	<10	
Sulphide content (diatomic sulphide), mg/L	<10	

Equipment Typically Used in Produced Water Treatment

- •Surge Drums
- 2-phase separators
- 3-phase separators
- Liquid/Liquid Hydrocyclones
- Solid/Liquid Hydrocyclones
- Multiphase Wellhead Desanders
- Degassers
- Single Cell Flotation
- Induced Gas Flotation
- •Filter Coalescer

 Cartridge Filters Chemical Injection Packages Gas Pressure Let-down Stations Hydraulic Wellhead Control Gas Filters Packed Towers Gas Cyclones Control Panels Analyser Houses and Laboratory

Produced Water Treatment Overview

PRODUCED WATER DEOILING EQUIPMENT OPTIONS

Surge Tanks	To collect fluids that are subject to regular
	surge or upset conditions
Collection Vessels	To collect fluids from multiple sources
Deoiling Hydrocyclones	Primary Separation for the removal of oil from water
Titled Plate Interceptors	Primary separation for the removal of oil from water
Centrifuges	Primary Separation for the removal of oil from water
Degassers	Removal of gas from water and a final polishing stage
Induced Gas Flotation	Secondary Separation for the removal of oil from water
Filter Coalescers	Removal of oil from water
Deep Bed Media Filtration	Removal of solids and oil from water
Adsorption Filtration	Removal of oil from water

PRODUCED WATER DESANDING EQUIPMENT OPTIONS

Cyclonic Wellhead Desander	Coarse Sand Removal between 100 to 150 microns
Coarse Strainer	All solids removal down to about 80 microns
Produced Water Desanding Hydrocyclone	Mid range sand removal down to about 30 to 40 microns
Deep Bed Multi Media Filtration	Fine Solids removal down to 5 microns
Cartridge Filters	Coarse to Fine Solids removal

KEY DESIGN FACTORS:

- Onshore or Offshore?
- Destination of Produced Water?
- New Plant, Expansion, Upgrade or Retrofit?
- Type of Field Oil or Gas?

Process Conditions:

- Flow rate / Turndown
- Pressure/ Temperature/Viscosity
- Composition of Feed Stream

Main Process Diagram

Main Process Diagram

OIL OUTLET

See Through View

Parameters affecting Performance

k x ($Density_{Water}$ - $Density_{Oil}$) x Droplet Size²

Stokes Low

Viscosity_{Water}

- Oil Droplet Size (Shear, Valve location, bends)
- Pressure Differential Ratio (PDR = 1.9)
 - -Example: Feed 7 Bar; Water: 4.5 Bar; Oil: 2 Bar
- Reject Ratio > 2%

Speed of Droplet Migration =

- Water lower viscosity at higher temperature
- Oil viscosity: Low viscosity oil can shear easily...
- Specific Gravity Difference.
- Cyclone Diameter, Length.
- Emulsion breakers, coagulants, surface tension
- Gases up to 10% (Displaces Oil on the overflow)

Advantages of Hydrocyclones

- High efficiency
- Compact design
- No moving parts
- Low weight
- Directly replacement
- Low CAPEX and low OPEX
- Little or no maintenance costs
- Reliable and Predictable
- Consistently Performance
- Wide material selection (stainless & duplex steels, ceramics, etc)

- Modular (parallel to handle changes in treating capacities.)
- Portable.
- Little instrumentation for automation.
- Well-understood
- Simple to operate, maintain, troubleshoot.
- No special tools and little operator training required.
- Insensitive to motion or orientation

Typical Production Fluids

Fluids in Separator = Oil & Water Hydrocyclone Outlet < 50 ppm

PW Package Inlet (from Separator) < 500 ppm PW Package Outlet < 30 ppm

Multimedia Filters Special Design Features

- Low Operational Flux (6 to 9 m3/hr/m2 or 2.5 to 3.5 gpm/ft2)
- Extended Media Height (1.7 m or 5.5 ft)
- Special Wedge wire collection system
- High Backwash flow rate: 35 m3/hr/m2 on two intervals
- Provision for future air scouring

Unique Features

- Hydraulic simulation calculations.
- Two skids only to minimize site activities.
- All skid Interconnecting pipe work, one pipe tie piece
 - Compact skid dimension 14.4 x 3.5 meters
 - Soft soil Pillars
- SST316 ANSI B73.1 pumps (API mechanical seal fitted with plan #62 flushing)
- Dosing systems were pre-engineered and skid mounted, complete with dosing pumps, FRP chemical tanks, mixers and corrosion resistant ejectors.

Raw Water Tank

Quantity: One (1)

- Capacity: 10 m3
- Make: Carbon Steel

Cyclone Feed Pumps

Quantity: Two (2)
Capacity: 80 m3/hr at 7 Bar
Make: Stainless Steel 316

Deoiler - Hydrocyclone

- Quantity: One (1) Duty
 Capacity: 80 m3/hr at 7 Bar
 Make: Carbon Steel Shell/ SS Duplex Liners
- Feed Oil Level: 450 ppm
- Outlet: Less than 20 ppm

Multi-Media Filters

- Quantity: Three (3) Duty
- Capacity: 80 m3/hr
- Make: C. St. Epoxy Coated
- Diameter: 96"
- Feed TSS: 20 ppm
- Outlet TSS: < 1 ppm</p>

Free CO2 Stripper

- Quantity: One (1) Duty
- Capacity: 80 m3/hr
- Make: FRP
- Diameter: 1.5 X 4 M H
- Feed CO2: 2,400 ppm
- Outlet CO2: < 10 ppm</p>

Cartridge Feed Pumps

Micron Cartridge Filters

Quantity: Two (2)
Capacity: 80 m3/hr
Make: St. St. 316
Rating: 5 Micron - Abs

Chemical Dosing Systems

A1 A2 B2 C1**B1** C2

D1

D2

E2

F2

